METABOLIC PRODUCTS OF MICROORGANISMS. 264[†]

EXFOLIAMYCIN AND RELATED METABOLITES, NEW NAPHTHOQUINONE ANTIBIOTICS FROM Streptomyces exfoliatus

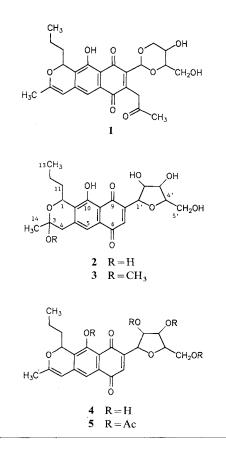
OLIVIER POTTERAT and HANS ZÄHNER*

Biologisches Institut, LB Mikrobiologie/ Antibiotika, Universität Tübingen D-7400 Tübingen, Germany

CORINNA VOLKMANN and AXEL ZEECK

Institut für Organische Chemie, Universität Göttingen, D-3400 Göttingen, Germany

(Received for publication September 7, 1992)


In the course of our chemical screening program, we observed that *Streptomyces exfoliatus* (strain Tü 1424) synthesized numerous quinoid pigments when rotary shaker cultures were supplemented with Amberlite XAD-1180. We report here on the isolation and structure elucidation of three antibiotics, which were shown to be new naphthoquinone C-glycosides $(2 \sim 4)$.

After isolation from a soil sample collected in Turkey, the strain Tü 1424 was cultivated in 500 ml baffled Erlenmeyer flasks containing each 100 ml of a medium consisting of soybean meal 2% and mannitol 2% (pH 7.5). The fermentation was carried out on a rotary shaker for 4 days at 27°C. After 36 hours, each flask was supplemented with 30 g of Amberlite XAD-1180 suspended in 50 ml water. The mycelium and the resin, collected as a mixture from the harvested broth (6 liters) by filtration, were extracted with methanol - acetone $(1:1, 5 \times 2 \text{ liters})$. After concentration under reduced pressure, the aqueous residue was extracted with ethyl acetate $(5 \times 1$ liter) and the evaporation residue of this extract (12g) was fractionated by flash chromatography (silica gel, methylene chloride-methanol, $94:6 \rightarrow 9:1$). Further separations by low pressure liquid chromatography (LPLC) on Lobar columns $(40 \sim 63 \,\mu\text{m}; \text{ i.d. } 31 \times 2.5 \,\text{cm}; \text{ Merck})$ provided compounds $1 \sim 4$ as red to orange solids. Compounds 1 (76 mg), 2 (42 mg) and 3 (139 mg) were purified on RP-18 with methanol-water (7:3, 1:1

[†] See ref 1.

and 65:35, respectively). Compound 4 (120 mg) was isolated after two successive LPLC steps on RP-18 (methanol-water, 65:35) and Diol material (methylene chloride - methanol, 99:1).

Compound 1 ($C_{25}H_{28}O_9$; Rf=0.55, silica gel/ methylene chloride-methanol, 9:1) was identified by its spectral data as naphthopyranomycin²⁾, an antibiotic recently isolated from Streptomyces sp. The physico-chemical properties and the ¹³C and ¹H spectral data of the new compounds $2 \sim 4$ are summarized in Tables 1 and 2. Anhydroexfoliamycin (4) showed UV data closely similar to those of 1. In the FAB-MS a guasi-molecular ion was observed at m/z 417 ([M+H]⁺) corresponding to the molecular formula C22H24O8. A fragment due to the loss of a propyl chain was detected at m/z 373 $([(M+H)-44)]^+)$. NMR investigations, especially 2D-NMR experiments, led to the structure 4. The long-range correlations revealed by a correlation spectroscopy via long range coupling (COLOC) experiment are depicted in the Fig. 1. The connectivity within the sugar moiety could not be

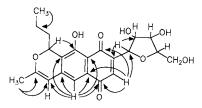

	2	3	4
Appearance	Orange to brown solid	Orange to brown solid	Dark red solid
FAB-MS (positive ions) ^a [M+H] ⁺	435	449	417
Molecular formula	$C_{22}H_{26}O_{9}$	$C_{23}H_{28}O_{9}$	$C_{22}H_{24}O_8$
MP	90°C	129~131°C	167°C
$\left[\alpha\right]_{D}^{20}$ (MeOH)	$+295^{\circ}$ (c 0.16)	$+478^{\circ}$ (c 0.11)	$+633^{\circ}$ (c 0.14)
UV λ_{\max}^{MeOH} nm (ε)	431 (4,130), 254 (10,840), 220 (31,600)	432 (3,970), 254 (10,950), 220 (28,970)	446 (4,570), 299 (18,430), 237 (15,560), 204 (22,870)
$\lambda_{\max}^{0.01 \text{ M HCl-MeOH}} \text{nm}(\varepsilon)$	437 (4,750), 299 (13,980), 230 (12,490), 213 (17,430), 207 (18,170)	455 (4,330), 299 (15,480),	445 (4,520), 300 (17,710),
$\lambda_{\max}^{0.01 \text{ M NaOH-MeOH}} \text{nm}(\varepsilon)$	558 (2,210), 444 (1,900), 283 (6,930), 229 (27,810)	568 (10,890), 229 (61,960)	553 (2,660), 293 (13,570), 263 (15,260), 223 (9,130)
IR (KBr) cm^{-1}	1640, 1605 (sh), 1595	1640, 1605 (sh), 1595, 1560	1640, 1605 (sh), 1595, 1560
Rf (TLC, silica gel) ^b	0.28	0.44	0.44

Table 1. Physico-chemical properties of compounds $2 \sim 4$.

^a Matrix nitrobenzyl alcohol (NBA).

^b Methylene chloride - methanol (9:1).

Fig. 1. Long-range heteronuclear correlations in 4 (COLOC).

completely deduced from 2D-NMR spectra because of signal overlapping. The furanosyl structure could be determined by the chemical shifts in the ¹H NMR spectrum (Table 2) of tetra-*O*-acetyl-anhydroexfoliamycin (5, orange needles from ethyl acetateheptane, mp 177°C), which was isolated after treatment of **4** (15 mg) with acetic anhydridepyridine followed by the usual work-up (95% yield). **5** has a molecular composition of $C_{30}H_{32}O_{12}$ determined by FAB-MS. In the ¹H NMR spectrum of **5**, 2'-H (+1.10 ppm), 3'-H (+1.12 ppm), 5'-H_a (+0.40 ppm) and 5'-H_b (+0.41 ppm) were shifted downfield whilst 1'-H and 4'-H remained little affected (see Table 2).

The FAB-MS of exfoliamycin (2) showed a *quasi*-molecular ion at $m/z 435 ([M+H]^+)$ agreeing with the molecular formula $C_{22}H_{26}O_9$. Fragments were detected at $m/z 417 ([(M+H)-18]^+)$ and 391 $([(M+H)-44]^+)$. In the ¹³C NMR spectrum, C-4 was observed at δ 41.2, C-3 at δ 94.5 indicating the hydration of the 3, 4 double bond of 4. Compared with 4, 14-H₃ (δ 1.56) resonated at higher field. These data were consistent with the presence of a

hemiacetal function located at C-3. Treatment of 2 with 0.1 M methanolic HCl readily afforded anhydroexfoliamycin (4) which definitively confirmed the structure of exfoliamycin.

3-O-Methylexfoliamycin (3) showed UV properties identical to those of 2. The FAB-MS of 3 revealed a *quasi*-molecular ion at m/z 449 ($[M+H]^+$) in agreement with the molecular formula C23H28O9. In the ¹³C NMR spectrum, an additional signal due to a methoxy group was observed at δ 48.9. Compared with exfoliamycin, C-3 was shifted downfield while C-14 resonated at higher field. The C/H correlations detected in a COLOC experiment and in particular a long-range coupling between the methoxy protons and C-3 fully supported the structure of 3 to be 3-O-methylexfoliamycin. Final evidence was obtained by acidic degradation of 3: Anhydroexfoliamycin (4) was readily produced in 0.1 M methanolic HCl while formation of exfoliamycin (2) was observed in aq 0.1% H₃PO₄. The elucidation of the stereochemistry of $2 \sim 4$ is under investigation.

The naphthoquinones $1 \sim 4$ possess similar antibacterial properties. In an agar plate diffusion assay, they were able to inhibit the growth of several Gram-positive microorganisms, including *Bacillus* subtilis, *B. brevis*, *Clostridium pasteurianum* and *Micrococcus luteus* but were completely ineffective against *Escherichia coli*, *Saccharomyces cerevisiae* and *Mucor hiemalis*. A comparision of the activity of $1 \sim 4$ against *B. subtilis* is shown in Table 3.

Exfoliamycin and its derivatives are the first naphthoquinone C-glycosides containing a pentosyl

No.		2 ^a		3 ^b		4°	5 ^b
INO.	δ_{c}	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$	δ_{H}	δ_{H}
1	69.8 d	5.08 (m)	69.8 d	4.90 (br s)	73.3 d	5.50 (dd, 3.5, 9.0)	5.30~5.45 (m)
3	94.5 s		97.9 s		157.1 s		
3-OMe			48.9 q	3.20 (s)			
4	41.2 t	2.93 (m)	40.7 t	2.90 (s)	100.3 d	5.61 (s)	5.64 (s)
4a	144.2 s		143.1 s		140.0 s		
5	119.8 d	7.28 (s)	120.1 d	7.30 (s)	114.7 d	7.10 (s)	7.41 (s)
5a	130.6 s		129.6 s		122.4 s		
6	184.8 s		184.3 s		185.2 s		
7	135.2 d	7.22 (d, 1.6)	134.6 d	7.05 (s)	134.4 d	7.02 (s)	7.01 (d, 1.5)
8	150.6 s		148.8 s		149.9 s		
9	191.3 s		190.7 s		188.7 s		
9a	113.9 s		113.0 s		113.8 s		
10	158.5 s	12.54 (OH)	158.1 s	12.20 (OH)	158.9 s		
10a	133.8 s		133.6 s		131.7 s		
11	36.6 t	$1.90 \sim 2.00 \text{ (m)}$	35.9 t	1.80~2.10 (m)	35.1 t	1.40~1.60, 1.95 (m)	$1.40 \sim 1.80 \text{ (m)}$
12	18.6 t	$1.20 \sim 1.50 \text{ (m)}$	17.9 t	1.20~1.50 (m)	18.4 t	1.27~1.60 (m)	$1.27 \sim 1.60 \text{ (m)}$
13	14.2 q	0.88 (t, 7.4)	14.0 q	0.90 (t, 7.0)	13.9 q	0.96 (t, 7.0)	0.89 (t, 7.2)
14	29.1 q	1.56 (s)	23.1 q	1.50 (s)	20.5 q	1.95 (s)	1.90 (s)
1'	80.5 d	5.03 (dd, 3.1, 1.6)	80.3 d	4.90 (br s)	80.6 d	5.02 (br s)	5.05 (dd, 4.0, 1.5)
2'	76.9 d	4.13 (dd, 3.1, 4.8)*	75.5 d	4.05 (br s)	76.0 d	4.13 (br s)	5.23 (m)
3'	71.3 d	4.03 (dd, 7.4, 4.8)*	71.6 d	4.05 (br s)	71.1 d	3.95~4.05 (m)	5.12 (m)
4'	84.1 d	3.96 (ddd, 7.4, 4.1, 2.8)*	83.8 d	4.05 (br s)	83.3 d	3.95~4.05 (m)	4.26 (m)
5'	62.0 t	3.72 (dd, 12.2, 4.1)*,	62.4 t	3.77 (br d, 12.2),	62.0 t	3.75 (br d, 12.0),	4.15 (dd, 12.1, 3.8),
		3.88 (dd, 12.2, 7.4)*		3.93 (br d, 12.2)		3.94 (br d, 12.0)	4.35 (dd, 12.1, 2.7)
OAc							2.34, 2.08, 2.07, 2.01

Table 2. NMR data of compounds $2 \sim 5$.

Attached proton test (APT) and DEPT experiments allowed distinction of carbon multiplicities; attributions based on COSY, HETCOR and COLOC data. Spectra were recorded at 100.6/400 MHz (2); 50.3/200 MHz (3 and 4); 250 MHz (5).

^a In acetone- d_6 .

^b In CDCl₃.

° In $CD_3OD - CDCl_3$.

* Multiplicities after D_2O exchange.

Table 3. Antimicrobial disc-diffusion assay of naphthoquinones $1 \sim 4$ against *Bacillus subtilis*.

((1)	Compound				
(mg/ml)	1	2	3	4	
1.0	20	11	10	13	
0.3	18	7		12	
0.1	14		_	10	
0.03	10		_		

Inhibition diameters (mm).

 $15 \,\mu$ l of a solution were spotted onto filter discs (6 mm diameter).

--: No inhibition zone.

residue. Naphthopyranomycin (1), exfoliamycin (2) and small amounts of anhydroexfoliamycin (4) are detected in the crude methanol - acetone extract. On the other hand 3-O-methylexfoliamycin (3) as well as large amounts of anhydroexfoliamycin (4) appear to be produced from exfoliamycin during the further work-up procedure. Similar reactions were described in the case of fusarubins³⁾, a series of naphthoquinones isolated from *Fusarium solani*. At the moment we do not have any explanation, why Tü 1424 produces naphthoquinones in the presence of Amberlite XAD-1180 only. The so-called supplemented fermentation seems to be a promising method to affect the secondary metabolism of talented strains and to provide new metabolites. Further studies are presently in progress.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 323). O.P. wish to thank the Swiss National Science Foundation and the Société Académique Vaudoise for the awarding of a postdoctoral fellowship.

References

- SCHÜZ, T. C.; H.-P. FIEDLER, H. ZÄHNER, M. RIECK & W. A. KÖNIG: Metabolic products of microorganisms. 263. Nikkomycins S₂, S_x, So₂ and So_x, new intermediates associated to the nikkomycin biosynthesis of *Streptomyces tendae*. J. Antibiotics 45: 199~206, 1992
- SHINDO, K. & H. KAWAI: A novel antibiotic, naphthopyranomycin. J. Antibiotics 45: 584~586, 1992
- GERBER, N. N. & M. S. AMMAR: New antibiotic pigments related to fusarubin from *Fusarium solani* (MART.) SACC. II. Structure elucidations. J. Antibiotics 32: 685~688, 1979